Network Services

Hotspot Mikrotik 777

Technology has been used Bootstrap Compatible Mobile.

Design Hotspot-12 beautiful Server Mikrotik

Design Hot Spot Mikrotik Free

Hotspot login server free

Hotspot login server free.

Merge 2 lines in server Pfsense?

Merge 2 lines in server Pfsense server free.

setup squid cahce in Ubuntu

How to setup squid cahce in Ubuntu ?

Saturday, October 10, 2015

Describe the purpose and basic operation of the protocols in the OSI and TCP/IP models

Quoting one of e-books and websites
Describe the purpose and basic operation of the protocols in the OSI and TCP/IP models

Overview of the TCP/IP Networking Model
The TCP/IP model both defines and references a large collection of protocols that allow computers to communicate. To define a protocol, TCP/IP uses documents called Requests for Comments (RFC). (You can find these RFCs using any online search engine.) The TCP/IP model also avoids repeating work already done by some other standards body or vendor consortium by simply referring to standards or protocols created by those groups.

For example, the Institute of Electrical and Electronic Engineers (IEEE) defines Ethernet LANs; the TCP/IP model does not define Ethernet in RFCs, but refers to IEEE Ethernet as an option.
An easy comparison can be made between telephones and computers that use TCP/IP. You go to the store and buy a phone from one of a dozen different vendors. When you get home and plug in the phone to the same cable in which your old phone was connected, the new phone works. The phone vendors know the standards for phones in their country and build their phones to match those standards.

Similarly, when you buy a new computer today, it implements the TCP/IP model to the point that you can usually take the computer out of the box, plug in all the right cables, turn it on, and it connects to the network. You can use a web browser to connect to your favorite website. How? Well, the OS on the computer implements parts of the TCP/IP model. The Ethernet card, or wireless LAN card, built into the computer implements some LAN standards referenced by the TCP/IP model. In short, the vendors that created the hardware and software implemented TCP/IP.

To help people understand a networking model, each model breaks the functions into a small number of categories called layers. Each layer includes protocols and standards that relate to that category of functions. TCP/IP actually has two alternative models, 



The model on the left, the original TCP/IP model, breaks TCP/IP into four layers. The top layers focus more on the applications that need to send and receive data, whereas the lower layers focus more on the need to somehow transmit the bits from one device to another. The model on the right is a newer version of the model, formed by expanding the network access layer on the left into two separate layers: data link and physical. Note that the model on the right is used more often today.


Many of you will have already heard of several TCP/IP protocols, like the examples listed in

Table 1.3 TCP/IP Architectural Model and Example Protocols




TCP/IP Application Layer
TCP/IP application layer protocols provide services to the application software running on a computer. The application layer does not define the application itself, but it defines services that applications need. For example, application protocol HTTP defines how web browsers can pull the contents of a web page from a web server. In short, the application layer provides an interface between software running on a computer and the network itself.

Table 1.3 TCP/IP Architectural Model and Example Protocols Arguably, the most popular TCP/IP application today is the web browser. Many major software vendors either have already changed or are changing their application software to support access from a web browser.

OSI Layers and Their Functions
Cisco requires that CCNAs demonstrate a basic understanding of the functions defined by each OSI layer, as well as remembering the names of the layers. You understand which layers of the OSI model most closely match the functions defined by that device or protocol.

Today, because most people happen to be much more familiar with TCP/IP functions than with OSI functions, one of the best ways to learn about the function of different OSI layers is to think about the functions in the TCP/IP model, and correlate those with the OSI model.

If you use the five-layer TCP/IP model, the bottom four layers of OSI and TCP/IP map closely together. The only difference in these bottom four layers is the name of OSI Layer 3 (network)

compared to TCP/IP (Internet). The upper three layers of the OSI reference model (application, presentation, and session—Layers 7, 6, and 5) define functions that all map to the TCP/IP application layer. Table 1.4 defines the functions of the seven layers.

 OSI Reference Model Layer Definitions 

Functional Description
Layer 7 provides an interface between the communications software and any applications that need to communicate outside the computer on which the application resides. It also defines processes for user authentication.

Layer 6 This layer’s main purpose is to define and negotiates data formats, such as ASCII text, EBCDIC text, binary, BCD, and JPEG. Encryption is also defined by OSI as a presentation layer service.

Layer 5 The session layer defines how to start, control, and end conversations (called sessions). This includes the control and management of multiple bidirectional messages so that the application can be notified if only some of a series of messages are completed. This allows the presentation layer to have a seamless view of an incoming stream of data.

Layer 4 protocols provide a large number of services, “Fundamentals of TCP/IP Transport, Applications, and Security.” Although OSI Layers 5 through 7 focus on issues related to the application, Layer 4 focuses on issues related to data delivery to another computer (for instance, error recovery and flow control).

Layer 3 The network layer defines three main features: logical addressing, routing (forwarding), and path determination. Routing defines how devices (typically routers) forward packets to their final destination. Logical addressing defines how each device can have an address that can be used by the routing process. Path determination refers to the work done by routing protocols to learn all possible routes, and choose the best route.

Layer 2 The data link layer defines the rules that determine when a device can send data over a particular medium. Data link protocols also define the format of a header and trailer that allows devices attached to the medium to successfully send and receive data.


Layer 1 This layer typically refers to standards from other organizations. These standards deal with the physical characteristics of the transmission medium, including connectors, pins, use of pins,
===============

how to activate and deactivate the use of the physical medium.
Table 1.5 lists most of the devices and protocols covered in the CCNA exams and their comparable OSI layers. Note that many network devices must actually understand the protocols at multiple OSI layers, so the layer listed in Table 1.5 actually refers to the highest layer that the device normally thinks about when performing its core work. For example, routers need to think about Layer 3 concepts, but they must also support features at both Layers 1 and 2.


Besides remembering the basics of the features of each OSI layer  and some example protocols and devices at each layer  you should also Layer Functional Description 4 Layer 4 protocols provide a large number of services, “Fundamentals of TCP/IP Transport, Applications, and Security.” Although OSI Layers 5 through 7 focus on issues related

to the application, Layer 4 focuses on issues related to data delivery to another computer (for instance, error recovery and flow control).

      3 The network layer defines three main features: logical addressing, routing (forwarding), and path determination. Routing defines how devices (typically routers) forward packets to their final destination. Logical addressing defines how each device can have an address that can be used by the routing process. Path determination refers to the work done by routing protocols to learn all possible routes, and choose the best route.

2 The data link layer defines the rules that determine when a device can send data over a particular medium. Data link protocols also define the format of a header and trailer that allows devices attached to the medium to successfully send and receive data.


1 This layer typically refers to standards from other organizations. These standards deal with the physical characteristics of the transmission medium, including connectors, pins, use of pins, electrical currents, encoding, light modulation, and the rules for how to activate and deactivate the use of the physical medium.



 Memorize the names of the layers. You can simply memorize them, but some people like to use a mnemonic phrase to make memorization easier. In the following three phrases, the first letter of each word is the same as the first letter of an OSI layer name, in the order specified in parentheses:

• All People Seem To Need Data Processing (Layers 7 to 1)
• Please Do Not Take Sausage Pizzas Away (Layers 1 to 7)
23
• Pew! Dead Ninja Turtles Smell Particularly Awful (Layers 1 to 7)


Ccna Certified Mr.Mohamed Samir

Identify common applications and their impact on the network

Quoting one of e-books and websites
Identify common applications and their impact on the network

Describe the impact of applications (Voice over IP and Video over IP) on a network
The main purpose of the Host-to-Host layer is to shield the upper-layer applications from the complexities of the network. This layer says to the upper layer, “Just give me your data stream, with any instructions, and I’ll begin the process of getting your information ready to send.”
• Transmission Control Protocol (TCP)
• User Datagram Protocol (UDP)
By understanding how TCP and UDP work, you can interpret the impact of applications on networks when using Voice and Video over IP.
Transmission Control Protocol (TCP)
Transmission Control Protocol (TCP) takes large blocks of information from an application and breaks them into segments. It numbers and sequences each segment so that the destination’s TCP stack can put the segments back into the order the application intended. After these segments are sent, TCP (on the transmitting host) waits for an acknowledgment of the receiving end’s TCP virtual circuit session, retransmitting those that aren’t acknowledged.

Before a transmitting host starts to send segments down the model, the sender’s TCP stack contacts the destination’s TCP stack to establish a connection. What is created is known as a virtual circuit. This type of communication is called connection-oriented. During this initial handshake, the two TCP layers also agree on the amount of information that’s going to be sent before the recipient’s TCP sends back an acknowledgment. With everything agreed upon in advance, the path is paved for reliable communication to take place.

TCP is a full-duplex, connection-oriented, reliable, and accurate protocol, but establishing all these terms and conditions, in addition to error checking, is no small task. TCP is very complicated and, not surprisingly, costly in terms of network overhead. And since today’s networks are much more reliable than those of yore, this added reliability is often unnecessary.

TCP Segment Format
Since the upper layers just send a data stream to the protocols in the Transport layers, I’ll demonstrate how TCP segments a data stream and prepares it for the Internet layer. When the
Internet layer receives the data stream, it routes the segments as packets through an internetwork.
The segments are handed to the receiving host’s Host-to-Host layer protocol, which rebuilds the data stream to hand to the upper-layer applications or protocols.

Figure 1.7 shows the TCP segment format. The figure shows the different fields within the TCP header.

The TCP header is 20 bytes long, or up to 24 bytes with options. You need to understand what each field in the TCP segment is:

Source port the port number of the application on the host sending the data.
Destination port The port number of the application requested on the destination host. Sequence number A number used by TCP that puts the data back in the correct order or retransmits missing or damaged data, a process called sequencing.
Acknowledgment number The TCP octet that is expected next.
• Header length The number of 32-bit words in the TCP header. This indicates where the data begins. The TCP header (even one including options) is an integral number of 32 bits in length. Reserved Always set to zero.
Code bits Control functions used to set up and terminate a session.
Window The window size the sender is willing to accept, in octets.
Checksum The cyclic redundancy check (CRC), because TCP doesn’t trust the lower layers and checks everything. The CRC checks the header and data fields.
Urgent A valid field only if the Urgent pointer in the code bits is set. If so, this value indicates the offset from the current sequence number, in octets, where the first segment of non-urgent data begins.
Options May be 0 or a multiple of 32 bits, if any. What this means is that no options have to be present (option size of 0). However, if any options are used that do not cause the option field to total a multiple of 32 bits, padding of 0s must be used to make sure the data begins on a 32-bit boundary.


Data Handed down to the TCP protocol at the Transport layer, which includes the upperlayer headers.

Let’s take a look at a TCP segment copied from a network analyzer:

TCP - Transport Control Protocol


Source Port: 5973

Destination Port: 23

Sequence Number: 1456389907

Ack Number: 1242056456
Offset: 5
Reserved: 0000
Code: %011000
Ack is valid
Push Request
Window: 61320
Checksum: 0x61a6
Urgent Pointer: 0
No TCP Options
TCP Data Area:
vL.5.+.5.+.5.+.5 76 4c 19 35 11 2b 19 35 11 2b 19 35 11
2b 19 35 +. 11 2b 19
Frame Check Sequence: 0x0d00000f

Did you notice that everything I talked about earlier is in the segment? As you can see from the number of fields in the header, TCP creates a lot of overhead. Application developers may opt for efficiency over reliability to save overhead, so the User Datagram Protocol was also defined at the Transport layer as an alternative.

User Datagram Protocol (UDP)
If you were to compare the User Datagram Protocol (UDP) with TCP, the former is basically the scaled-down economy model that’s sometimes referred to as a thin protocol. Like a thin person on a park bench, a thin protocol doesn’t take up a lot of room—or in this case, much bandwidth on a network.

UDP doesn’t offer all the bells and whistles of TCP either, but it does do a fabulous job of transporting information that doesn’t require reliable delivery—and it does so using far fewer network resources. (UDP is covered thoroughly in Request for Comments 768.)

There are some situations in which it would definitely be wise for developers to opt for UDP rather than TCP. Remember the watchdog SNMP up there at the Process/Application layer? SNMP monitors the network, sending intermittent messages and a fairly steady flow of status updates and alerts, especially when running on a large network. The cost in overhead to establish, maintain, and close a TCP connection for each one of those little messages would reduce what would be an otherwise healthy, efficient network to a dammed-up bog in no time!

Another circumstance calling for UDP over TCP is when reliability is already handled at the Process/Application layer. Network File System (NFS) handles its own reliability issues, making the use of TCP both impractical and redundant. But ultimately, it’s up to the application developer to decide whether to use UDP or TCP, not the user who wants to transfer data faster.

UDP does not sequence the segments and does not care in which order the segments arrive at the destination. But after that, UDP sends the segments off and forgets about them. It doesn’t follow through, check up on them, or even allow for an acknowledgment of safe arrival—complete abandonment. Because of this, it’s referred to as an unreliable protocol.

This does not mean that UDP is ineffective, only that it doesn’t handle issues of reliability. Further, UDP doesn’t create a virtual circuit, nor does it contact the destination before delivering information to it. Because of this, it’s also considered a connectionless protocol.

Since UDP assumes that the application will use its own reliability method, it doesn’t use any. This gives an application developer a choice when running the Internet Protocol stack: TCP for reliability or UDP for faster transfers.
So if you’re using Voice over IP (VoIP), for example, you really don’t want to use UDP, because if the segments arrive out of order (very common in IP networks), they’ll just be passed up to the next OSI (DoD) layer in whatever order they’re received, resulting in some seriously garbled data. On the other hand, TCP sequences the segments so they get put back together in exactly the right order—something that UDP just can’t do.

UDP Segment Format
Figure 1.8 clearly illustrates UDP’s markedly low overhead as compared to TCP’s hungry usage. Look at the figure carefully—can you see that UDP doesn’t use windowing or provide for acknowledgments in the UDP header?
It’s important for you to understand what each field in the UDP segment is: Source port Port number of the application on the host sending the data Destination port Port number of the application requested on the destination host Length Length of UDP header and UDP data
Checksum Checksum of both the UDP header and UDP data fields Data Upper-layer data



UDP, like TCP, doesn’t trust the lower layers and runs its own CRC. Remember that the Frame Check Sequence (FCS) is the field that houses the CRC, which is why you can see the FCS information. The following shows a UDP segment caught on a network analyzer:

UDP - User Datagram Protocol

Source Port: 1085
Destination Port: 5136
Length: 41
Checksum: 0x7a3c
UDP Data Area:
..Z......00 01 5a 96 00 01 00 00 00 00 00 11 0000 00
...C..2._C._C 2e 03 00 43 02 1e 32 0a 00 0a 00 80 43 00 80
Frame Check Sequence: 0x00000000

Notice that low overhead! Try to find the sequence number, ack number, and window size in the UDP segment. You can’t because they just aren’t there!
Key Concepts of Host-to-Host Protocols
Since you’ve seen both a connection-oriented (TCP) and connectionless (UDP) protocol in action, it would be good to summarize the two here. Table 1. 2 highlight some of the key concepts that you should keep in mind regarding these two protocols. You should memorize this table.


A telephone analogy could really help you understand how TCP works. Most of us know that before you speak to someone on a phone, you must first establish a connection with that other person—wherever they are. This is like a virtual circuit with the TCP protocol. If you were giving someone important information during your conversation, you might say, “You know?” or ask, “Did you get that?” Saying something like this is a lot like a TCP acknowledgment— it’s designed to get you verification. From time to time (especially on cell phones), people also ask, “Are you still there?” They end their conversations with a “Goodbye” of some kind, putting closure on the phone call. TCP also performs these types of functions.

Alternately, using UDP is like sending a postcard. To do that, you don’t need to contact the other party first. You simply write your message, address the postcard, and mail it. This is analogous to UDP’s connectionless orientation. Since the message on the postcard is probably not a matter of life or death, you don’t need an acknowledgment of its receipt. Similarly, UDP does not involve acknowledgments.

Ccna Certified Mr.Mohamed Samir